इसे छोड़कर कंटेंट पर जाएं

1. संबंध एवं पफलन

Source

There is no permanent place in the world for ugly mathematics … . It may be very hard to define mathematical beauty but that is just as true of beauty of any kind, we may not know quite what we mean by a beautiful poem, but that does not prevent us from recognising one when we read it.

दुनिया में बदसूरत गणित के लिए कोई स्थायी जगह नहीं है… गणितीय सुंदरता को परिभाषित करना बहुत कठिन हो सकता है लेकिन यह किसी भी तरह की सुंदरता के लिए उतना ही सच है, हम शायद यह नहीं जानते कि एक सुंदर कविता से हमारा क्या मतलब है, लेकिन जब हम इसे पढ़ते हैं तो यह हमें पहचानने से नहीं रोकता है। [गूगल द्वारा अनुवादित]

G. H. Hardy
Lejeune Dirichlet

Lejeune Dirichlet
(1805-1859)

1.1 भूमिका (Introduction)

स्मरण कीजिए कि कक्षा XI में, संबंध एवं फलन, प्रांत, सहप्रांत तथा परिसर आदि की अवधारणाओं का, विभिन्न प्रकार के वास्तविक मानीय फलनों और उनके आलेखों सहित परिचय कराया जा चुका है। गणित में शब्द ‘संबंध (Relation)’ की सवंफ़ल्पना को अंग्रेजी भाषा में इस शब्द के अर्थ से लिया गया है, जिसके अनुसार दो वस्तुएँ परस्पर संबंधित होती है, यदि उनके बीच एक अभिज्ञेय (Recognisable) कड़ी हो। मान लीजिए कि AA, किसी स्कूल की कक्षा XII के विद्यार्थियों का समुच्चय है तथा BB उसी स्कूल की कक्षा XI के विद्यार्थियों का समुच्चय हैं। अब समुच्चय AA से समुच्चय BB तक के संबंधों के कुछ उदाहरण इस प्रकार हैं

  • (i) {(a,b)A×B:a,b\{(a, b) ∈ A \times B: a, b का भाई है}\},
  • (ii) {(a,b)A×B:a,b\{(a, b) ∈ A \times B: a, b की बहन है}\},
  • (iii) {(a,b)A×B:a\{(a, b) ∈ A \times B: a की आयु bb की आयु से अधिक है}\},
  • (iv) {(a,b)A×B:\{(a, b) ∈ A \times B: पिछली अंतिम परीक्षा में aa द्वारा प्राप्त पूर्णांक bb द्वारा प्राप्त पूर्णांक से कम है}\},
  • (v) {(a,b)A×B:a\{(a, b) ∈ A \times B: a उसी जगह रहता है जहाँ bb रहता है }\}. तथापि AA से BB तक के किसी संबंध RR को अमूर्तरूप (Abstracting) से हम गणित में A×BA \times B के एक स्वेच्छ (Arbitrary) उपसमुच्चय की तरह परिभाषित करते हैं।

यदि (a,b)R(a, b) ∈ R, तो हम कहते हैं कि संबंध RR के अंतर्गत a,ba, b से संबंधित है और हम इसे aRba R b लिखते हैं। सामान्यत:, यदि (a,b)R(a, b) ∈ R, तो हम इस बात की चिंता नहीं करते हैं कि aa तथा bb के बीच कोई अभिज्ञेय कड़ी है अथवा नहीं है। जैसा कि कक्षा XI में देख चुके हैं, फलन एक विशेष प्रकार के संबंध होता हैं।

इस अध्याय में, हम विभिन्न प्रकार के संबंधों एवं फलनों, फलनों के संयोजन (composition), व्युत्क्रमणीय (Invertible) फलनों और द्विआधारी संक्रियाओं का अध्ययन करेंगे।

1.2 संबंधों के प्रकार (Types of Relations)

इस अनुच्छेद में हम विभिन्न प्रकार के संबंधों का अध्ययन करेंगे। हमें ज्ञात है कि किसी समुच्चय AA में संबंध, A×AA \times A का एक उपसमुच्चय होता है। अत: रिक्त समुच्चय φA×Aφ ⊂ A \times A तथा A×AA \times A स्वयं, दो अन्त्य संबंध हैं। स्पष्टीकरण हेतु, R={(a,b):ab=10}R = \{(a, b): a - b = 10\} द्वारा प्रदत्त समुच्चय A = 4 पर परिभाषित एक संबंध R पर विचार कीजिए। यह एक रिक्त समुच्चय है, क्योंकि ऐसा कोई भी युग्म (pair) नहीं है जो प्रतिबंध a - b = 10 को संतुष्ट करता है। इसी प्रकार R={(a,b):ab0}R' = \{(a, b) : | a - b | ≥ 0\}, संपूर्ण समुच्चय A×AA \times A के तुल्य है, क्योंकि A×AA \times A के सभी युग्म (a,b),ab0(a, b), | a - b | ≥ 0 को संतुष्ट करते हैं। यह दोनों अन्त्य के उदाहरण हमें निम्नलिखित परिभाषाओं के लिए प्रेरित करते हैं।

परिभाषा 1

समुच्चय AA पर परिभाषित संबंध RR एक रिक्त संबंध कहलाता है, यदि AA का कोई भी अवयव AA के किसी भी अवयव से संबंधित नहीं है, अर्थात् R=φA×AR = φ ⊂ A \times A.

परिभाषा 2

समुच्चय AA पर परिभाषित संबंध RR, एक सार्वत्रिक (universal) संबंध कहलाता है, यदि AA का प्रत्येक अवयव AA के सभी अवयवों से संबंधित है, अर्थात् R=A×AR = A \times A.

रिक्त संबंध तथा सार्वत्रिक संबंध को कभी-कभी तुच्छ (trivial) संबंध भी कहते हैं।

उदाहरण 1

मान लीजिए कि AA किसी बालकों के स्कूल के सभी विद्यार्थियों का समुच्चय है। दर्शाइए कि R={(a,b):a,bR = \{(a, b) : a, b की बहन है }\} द्वारा प्रदत्त संबंध एक रिक्त संबंध है तथा R={(a,b):aR' = \{(a, b) : a तथा bb की ऊँचाईयों का अंतर 3 मीटर से कम है }\} द्वारा प्रदत्त संबंध एक सार्वत्रिक संबंध है।

हल

प्रश्नानुसार, क्योंकि स्कूल बालकों का है, अतएव स्कूल का कोई भी विद्यार्थी, स्कूल के किसी भी विद्यार्थी की बहन नहीं हो सकता है। अत: R=φR = φ, जिससे प्रदर्शित होता है कि R रिक्त संबंध है। यह भी स्पष्ट है कि किन्हीं भी दो विद्यार्थियों की ऊँचाइयों का अंतर 3 मीटर से कम होना ही चाहिए। इससे प्रकट होता है कि R=A×AR' = A \times A सार्वत्रिक संबंध है।

यदि (a,b)R(a, b) ∈ R, तो हम कहते हैं कि a,ba,b से संबंधित है’ और इस बात को हम aRba R b द्वारा प्रकट करते हैं।

एक अत्यन्त महत्वपूर्ण संबंध, जिसकी गणित में एक सार्थक (significant) भूमिका है, तुल्यता संबंध (Equivalence Relation) कहलाता है। तुल्यता संबंध का अध्ययन करने के लिए हम पहले तीन प्रकार के संबंधों, नामत: स्वतुल्य (Reflexive), सममित (Symmetric) तथा संक्रामक (Transitive) संबंधों पर विचार करते हैं।

परिभाषा 3

समुच्चय AA पर परिभाषित संबंध RR;

  • (i) स्वतुल्य (reflexive) कहलाता है, यदि प्रत्येक aAa ∈ A के लिए (a,a)R(a, a) ∈ R,
  • (ii) सममित (symmetric) कहलाता है, यदि समस्त a1,a2Aa1, a2 ∈ A के लिए (a1,a2)R(a1, a2) ∈ R से (a2,a1)R(a2, a1) ∈ R प्राप्त हो।
  • (iii) संक्रामक (transitive) कहलाता है, यदि समस्त, a1,a2,a3Aa1, a2, a3 ∈ A के लिए (a1,a2)R(a1, a2) ∈ R तथा (a2,a3)R(a2, a3) ∈ R से (a1,a3)R(a1, a3) ∈ R प्राप्त हो।
परिभाषा 4

AA पर परिभाषित संबंध RR एक तुल्यता संबंध कहलाता है, यदि RR स्वतुल्य, सममित तथा संक्रामक है।

उदाहरण 2

Let T be the set of all triangles in a plane with RR a relation in TT given by R={(T1,T2):T1R = \{(T1, T2) : T1 is congruent to T2}T2\}. Show that RR is an equivalence relation.

हल

RR is reflexive, since every triangle is congruent to itself.

Further, (T1,T2)RT1(T_1, T_2) ∈ R ⇒ T_1 is congruent to T2T1T_2 ⇒ T_1 is congruent to T1(T2,T1)RT_1 ⇒ (T_2, T_1) ∈ R. Hence, RR is symmetric.

Moreover, (T1,T2),(T2,T1)RT(T_1, T_2), (T_2, T_1) ∈ R ⇒ T is congruent to T2T_2 and T2T_2 is congruent to T3T1T_3 ⇒ T_1 is congruent to T3(T1,T3)RT_3 ⇒ (T_1, T_3) ∈ R. Therefore, RR is an equivalence relation.

उदाहरण 3

Let LL be the set of all lines in a plane and R be the relation in LL defined as R={(L1,L2):L1R = \{(L_1, L_2) : L_1 is perpendicular to L2}L_2\}. Show that RR is symmetric but neither reflexive nor transitive.

हल

Fig 1.1

Fig 1.1

RR is not reflexive, as a line L1L_1 can not be perpendicular to itself, i.e., (L1,L1)R(L_1, L_1) ∉ R. RR is symmetric as (L1,L2)R(L_1, L_2) ∈ R

L1⇒ L_1 is perpendicular to L2L_2

L2⇒ L_2 is perpendicular to L1L_1

(L2,L1)R⇒ (L2, L1) ∈ R.

RR is not transitive. Indeed, if L1L_1 is perpendicular to L2L_2 and L2L_2 is perpendicular to L3L_3, then L1L_1 can never be perpendicular to L3L_3. In fact, L1L_1 is parallel to L3L_3, i.e., (L1,L2)R,(L2,L3)R(L_1, L_2) ∈ R, (L_2, L_3) ∈ R but (L1,L3)R(L_1, L_3) ∉ R.

उदाहरण 4

Show that the relation RR in the set {1,2,3}\{1, 2, 3\} given by R={(1,1),(2,2),(3,3),(1,2),(2,3)}R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)\} is reflexive but neither symmetric nor transitive.

हल

RR is reflexive, since (1,1)(1, 1), (2,2)(2, 2) and (3,3)(3, 3) lie in RR. Also, RR is not symmetric, as (1,2)R(1, 2) ∈ R but (2,1)R(2, 1) ∉ R. Similarly, RR is not transitive, as (1,2)R(1, 2) ∈ R and (2,3)R(2, 3) ∈ R but (1,3)R(1, 3) ∉ R.

उदाहरण 5

Show that the relation R in the set Z of integers given by

R={(a,b):2R = \{(a, b) : 2 divides ab}a - b\}

is an equivalence relation.

हल

RR is reflexive, as 22 divides (aa)(a - a) for all aZa ∈ ℤ. Further, if (a,b)R(a, b) ∈ R, then 22 divides aba - b. Therefore, 22 divides bab - a. Hence, (b,a)R(b, a) ∈ R, which shows that RR is symmetric. Similarly, if (a,b)R(a, b) ∈ R and (b,c)R(b, c) ∈ R, then aba - b and bcb - c are divisible by 22. Now, ac=(ab)+(bc)a - c = (a - b) + (b - c) is even (Why?). So, (ac)(a - c) is divisible by 22. This shows that RR is transitive. Thus, RR is an equivalence relation in Z.

In Example 5, note that all even integers are related to zero, as (0,±2)(0, ± 2), (0,±4)(0, ± 4) etc., lie in RR and no odd integer is related to 00, as (0,±1)(0, ± 1), (0,±3)(0, ± 3) etc., do not lie in RR. Similarly, all odd integers are related to one and no even integer is related to one. Therefore, the set EE of all even integers and the set OO of all odd integers are subsets of Z satisfying following conditions:

  • (i) All elements of EE are related to each other and all elements of OO are related to each other.
  • (ii) No element of EE is related to any element of OO and vice-versa.
  • (iii) EE and OO are disjoint and Z=EOℤ = E ∪ O.

The subset EE is called the equivalence class containing zero and is denoted by [0][0]. Similarly, OO is the equivalence class containing 11 and is denoted by [1][1]. Note that [0][1][0] ≠ [1], [0]=[2r][0] = [2r] and [1]=[2r+1][1] = [2r + 1], rZr ∈ ℤ. Infact, what we have seen above is true for an arbitrary equivalence relation RR in a set XX. Given an arbitrary equivalence relation RR in an arbitrary set XX, RR divides XX into mutually disjoint subsets Ai called partitions or subdivisions of XX satisfying:

  • (i) all elements of AiA_i are related to each other, for all i.
  • (ii) no element of AiA_i is related to any element of AjA_j, iji ≠ j.
  • (iii) Aj=X∪ A j = X and AiAj=φA_i ∩ A_j = φ, iji ≠ j.

The subsets AiA_i are called equivalence classes. The interesting part of the situation is that we can go reverse also. For example, consider a subdivision of the set Z given by three mutually disjoint subsets A1A_1, A2A_2 and A3A_3 whose union is Z with

A1={xZ:xA_1 = \{x ∈ ℤ : x is a multiple of 3}={...,6,3,0,3,6,...}3\} = \{..., - 6, - 3, 0, 3, 6, ...\}

A2={xZ:x1A_2 = \{x ∈ ℤ : x - 1 is a multiple of 3}={...,5,2,1,4,7,...}3\} = \{..., - 5, - 2, 1, 4, 7, ...\}

A3={xZ:x2A_3 = \{x ∈ ℤ : x - 2 is a multiple of 3}={...,4,1,2,5,8,...}3\} = \{..., - 4, - 1, 2, 5, 8, ...\}

Define a relation RR in Z given by R={(a,b):3R = \{(a, b) : 3 divides ab}a - b\}. Following the arguments similar to those used in Example 5, we can show that RR is an equivalence relation. Also, A1A_1 coincides with the set of all integers in Z which are related to zero, A2A_2 coincides with the set of all integers which are related to 11 and A3A_3 coincides with the set of all integers in Z which are related to 22. Thus, A1=[0],A2=[1]A_1 = [0], A_2 = [1] and A3=[2]A_3 = [2]. In fact, A1=[3r]A_1 = [3r], A2=[3r+1]A_2 = [3r + 1] and A3=[3r+2]A_3 = [3r + 2], for all rZr ∈ ℤ.

उदाहरण 6

Let RR be the relation defined in the set A={1,2,3,4,5,6,7}A = \{1, 2, 3, 4, 5, 6, 7\} by R={(a,b):R = \{(a, b) : both aa and bb are either odd or even}\}. Show that RR is an equivalence relation. Further, show that all the elements of the subset {1,3,5,7}\{1, 3, 5, 7\} are related to each other and all the elements of the subset {2,4,6}\{2, 4, 6\} are related to each other, but no element of the subset {1,3,5,7}\{1, 3, 5, 7\} is related to any element of the subset {2,4,6}\{2, 4, 6\}.

हल

Given any element aa in AA, both aa and aa must be either odd or even, so that (a,a)R(a, a) ∈ R. Further, (a,b)R(a, b) ∈ R ⇒ both aa and bb must be either odd or even (b,a)R⇒ (b, a) ∈ R. Similarly, (a,b)R(a, b) ∈ R and (b,c)R(b, c) ∈ R ⇒ all elements aa, bb, cc, must be either even or odd simultaneously (a,c)R⇒ (a, c) ∈ R. Hence, RR is an equivalence relation. Further, all the elements of {1,3,5,7}\{1, 3, 5, 7\} are related to each other, as all the elements of this subset are odd. Similarly, all the elements of the subset {2,4,6}\{2, 4, 6\} are related to each other, as all of them are even. Also, no element of the subset {1,3,5,7}\{1, 3, 5, 7\} can be related to any element of {2,4,6}\{2, 4, 6\}, as elements of {1,3,5,7}\{1, 3, 5, 7\} are odd, while elements of {2,4,6}\{2, 4, 6\} are even.


EXERCISE 1.1

1.1 Question 1

Determine whether each of the following relations are reflexive, symmetric and transitive:

  • (i) Relation RR in the set A={1,2,3,...,13,14}A = \{1, 2, 3, ..., 13, 14\} defined as R={(x,y):3xy=0}R = \{(x, y) : 3x - y = 0\}

  • (ii) Relation RR in the set NN of natural numbers defined as R={(x,y):y=x+5R = \{(x, y) : y = x + 5 and x<4}x < 4\}

  • (iii) Relation RR in the set A={1,2,3,4,5,6}A = \{1, 2, 3, 4, 5, 6\} as R={(x,y):yR = \{(x, y) : y is divisible by x}x\}

  • (iv) Relation RR in the set ZZ of all integers defined as R={(x,y):xyR = \{(x, y) : x - y is an integer}\}

  • (v) Relation RR in the set AA of human beings in a town at a particular time given by

    • (a) R={(x,y):xR = \{(x, y) : x and y work at the same place}\}
    • (b) R={(x,y):xR = \{(x, y) : x and y live in the same locality}\}
    • (c) R={(x,y):xR = \{(x, y) : x is exactly 7 cm taller than y}y\}
    • (d) R={(x,y):xR = \{(x, y) : x is wife of y}y\}
    • (e) R={(x,y):xR = \{(x, y) : x is father of y}y\}

1.1 Question 2

Show that the relation RR in the set RR of real numbers, defined as R={(a,b):ab2}R = \{(a, b) : a ≤ b2\} is neither reflexive nor symmetric nor transitive.

1.1 Question 3

Check whether the relation RR defined in the set {1,2,3,4,5,6}\{1, 2, 3, 4, 5, 6\} as R={(a,b):b=a+1}R = \{(a, b) : b = a + 1\} is reflexive, symmetric or transitive.

1.1 Question 4

Show that the relation RR in RR defined as R={(a,b):ab}R = \{(a, b) : a ≤ b\}, is reflexive and transitive but not symmetric.

1.1 Question 5

Check whether the relation RR in RR defined by R={(a,b):ab3}R = \{(a, b) : a ≤ b3\} is reflexive,symmetric or transitive.

1.1 Question 6

Show that the relation RR in the set {1,2,3}\{1, 2, 3\} given by R={(1,2),(2,1)}R = \{(1, 2), (2, 1)\} is symmetric but neither reflexive nor transitive.

1.1 Question 7

Show that the relation R in the set A of all the books in a library of a college, given by R={(x,y):xR = \{(x, y) : x and yy have same number of pages}\} is an equivalence relation.

1.1 Question 8

Show that the relation RR in the set A={1,2,3,4,5}A = \{1, 2, 3, 4, 5\} given by R={(a,b):abR = \{(a, b) : |a - b| is even}\}, is an equivalence relation. Show that all the elements of {1,3,5}\{1, 3, 5\} are related to each other and all the elements of {2,4}\{2, 4\} are related to each other. But no element of {1,3,5}\{1, 3, 5\} is related to any element of {2,4}\{2, 4\}.

1.1 Question 9

Show that each of the relation 4 in the set A={xZ:0x12}A = \{x ∈ Z : 0 ≤ x ≤ 12\}, given by

  • (i) R={(a,b):abR = \{(a, b) : |a - b| is a multiple of 4}4\}
  • (ii) R={(a,b):a=b}R = \{(a, b) : a = b\} is an equivalence relation. Find the set of all elements related to 1 in each case.

1.1 Question 10

Give an example of a relation. Which is

  • (i) Symmetric but neither reflexive nor transitive.
  • (ii) Transitive but neither reflexive nor symmetric.
  • (iii) Reflexive and symmetric but not transitive.
  • (iv) Reflexive and transitive but not symmetric.
  • (v) Symmetric and transitive but not reflexive.

1.1 Question 11

Show that the relation RR in the set AA of points in a plane given by R={(P,Q):R = \{(P, Q) : distance of the point PP from the origin is same as the distance of the point QQ from the origin}\}, is an equivalence relation. Further, show that the set of all points related to a point P(0,0)P ≠ (0, 0) is the circle passing through PP with origin as centre.

1.1 Question 12

Show that the relation R defined in the set A of all triangles as R={(T1,T2):T1R = \{(T_1, T_2) : T_1 is similar to T2}T_2\}, is equivalence relation. Consider three right angle triangles T1T_1 with sides 3,4,53, 4, 5, T2T_2 with sides 5,12,135, 12, 13 and T3T_3 with sides 6,8,106, 8, 10. Which triangles among T1T_1, T2T_2 and T3T_3 are related?

1.1 Question 13

Show that the relation RR defined in the set AA of all polygons as R={(P1,P2):P1R = \{(P_1, P_2) : P_1 and P2P_2 have same number of sides}\}, is an equivalence relation. What is the set of all elements in AA related to the right angle triangle TT with sides 33, 44 and 55?

1.1 Question 14

Let LL be the set of all lines in XYXY plane and RR be the relation in LL defined as R={(L1,L2):L1R = \{(L_1, L_2) : L_1 is parallel to L2}L_2\}. Show that RR is an equivalence relation. Find the set of all lines related to the line y=2x+4y = 2x + 4.

1.1 Question 15

Let RR be the relation in the set {1,2,3,4}\{1, 2, 3, 4\} given by R={(1,2),(2,2),(1,1),(4,4),(1,3),(3,3),(3,2)}R = \{(1, 2), (2, 2), (1, 1), (4,4), (1, 3), (3, 3), (3, 2)\}. Choose the correct answer.

  • (A) RR is reflexive and symmetric but not transitive.
  • (B) RR is reflexive and transitive but not symmetric.
  • (C) RR is symmetric and transitive but not reflexive.
  • (D) RR is an equivalence relation.

1.1 Question 16

Let RR be the relation in the set NN given by R={(a,b):a=b2,b>6}R = \{(a, b) : a = b - 2, b > 6\}. Choose the correct answer.

  • (A) (2,4)R(2, 4) ∈ R
  • (B) (3,8)R(3, 8) ∈ R
  • (C) (6,8)R(6, 8) ∈ R
  • (D) (8,7)R(8, 7) ∈ R

1.3 Types of Functions

The notion of a function along with some special functions like identity function, constant function, polynomial function, rational function, modulus function, signum function etc. along with their graphs have been given in Class XI.

Addition, subtraction, multiplication and division of two functions have also been studied. As the concept of function is of paramount importance in mathematics and among other disciplines as well, we would like to extend our study about function from where we finished earlier. In this section, we would like to study different types of functions.

Consider the functions f1f_1, f2f_2, f3f_3 and f4f_4 given by the following diagrams.

In Fig 1.2, we observe that the images of distinct elements of X1X_1 under the function f1f_1 are distinct, but the image of two distinct elements 11 and 22 of X1X_1 under f2f_2 is same, namely bb. Further, there are some elements like ee and ff in X2X_2 which are not images of any element of X1X1 under f1f_1, while all elements of X3X3 are images of some elements of X1X1 under f3f_3. The above observations lead to the following definitions:

परिभाषा 5

A function f:XYf : X → Y is defined to be one-one (or injective), if the images of distinct elements of XX under ff are distinct, i.e., for every x1,x2X,f(x1)=f(x2)x_1, x_2 ∈ X, f(x_1) = f(x_2) implies x1=x2x_1 = x_2. Otherwise, ff is called many-one.

The function f1f_1 and f4f_4 in Fig 1.2 (i) and (iv) are one-one and the function f2f_2 and f33f3_3 in Fig 1.2 (ii) and (iii) are many-one.

परिभाषा 6

A function f:XYf : X → Y is said to be onto (or surjective), if every element of YY is the image of some element of XX under f, i.e., for every yYy ∈ Y, there exists an element xx in XX such that f(x)=yf(x) = y.

The function f3f_3 and f4f_4 in Fig 1.2 (iii), (iv) are onto and the function f1f_1 in Fig 1.2 (i) is not onto as elements ee, ff in X2X_2 are not the image of any element in X1X1 under f1f_1.

Fig 1.2

Fig 1.2 (i) to (iv)
परिभाषा 7

A function f:XYf : X → Y is said to be one-one and onto (or bijective), if ff is both one-one and onto.

The function f4f_4 in Fig 1.2 (iv) is one-one and onto.

उदाहरण 7

Let AA be the set of all 5050 students of Class X in a school. Let f:ANf : A → ℕ be function defined by f(x)=f(x) = roll number of the student xx. Show that ff is one-one but not onto.

हल

No two different students of the class can have same roll number. Therefore, ff must be one-one. We can assume without any loss of generality that roll numbers of students are from 11 to 5050. This implies that 5151 in N is not roll number of any student of the class, so that 5151 can not be image of any element of XX under ff. Hence, ff is not onto.

उदाहरण 8

Show that the function f:NNf : ℕ → ℕ, given by f(x)=2xf(x) = 2x, is one-one but not onto.

हल

The function ff is one-one, for f(x1)=f(x2)2x1=2x2x1=x2f(x_1) = f(x_2) ⇒ 2x_1 = 2x_2 ⇒ x_1 = x_2. Further, f is not onto, as for 1N1 ∈ ℕ, there does not exist any xx in N such that f(x)=2x=1f(x) = 2x = 1.

उदाहरण 9

Prove that the function f:RRf : ℝ → ℝ, given by f(x)=2xf(x) = 2x, is one-one and onto.

हल

Fig 1.3

Fig 1.3

ff is one-one, as f(x1)=f(x2)2x1=2x2x1=x2f(x_1) = f(x_2) ⇒ 2x_1 = 2x_2 ⇒ x_1 = x_2. Also, given any real number yy in R, there exists y2\frac{y}{2} in R such that f(y2)=2(y2)=yf(\frac{y}{2}) = 2⋅(\frac{y}{2}) = y. Hence, ff is onto.

उदाहरण 10

Show that the function f:NNf : ℕ → ℕ, given by f(1)=f(2)=1f (1) = f (2) = 1 and f(x)=x1f(x) = x - 1, for every x>2x > 2, is onto but not one-one.

हल

ff is not one-one, as f(1)=f(2)=1f(1) = f(2) = 1. But ff is onto, as given any yN,y1y ∈ ℕ, y ≠ 1, we can choose xx as y+1y + 1 such that f(y+1)=y+11=yf(y + 1) = y + 1 - 1 = y. Also for 1N1 ∈ ℕ, we have f(1)=1f(1) = 1.

उदाहरण 11

Show that the function f:RRf : ℝ → ℝ, defined as f(x)=x2f(x) = x^2, is neither one-one nor onto.

हल

Fig 1.4

Fig 1.4

Since f(1)=1=f(1)f(-1) = 1 = f (1), ff is not one-one. Also, the element 2-2 in the co-domain R is not image of any element xx in the domain R (Why?). Therefore ff is not onto.

उदाहरण 12

Show that f:NNf : ℕ → ℕ, given by

f(x)={x+1,if x is odd,x1,if x is even,f(x) = \begin{cases} x+1,& \text{if }x\text{ is odd},\\ x-1,& \text{if }x\text{ is even}, \end{cases}

is both one-one and onto.

हल

Suppose f(x1)=f(x2)f(x_1) = f(x_2). Note that if x1x_1 is odd and x2x_2 is even, then we will have x1+1=x21x_1 + 1 = x_2 - 1, i.e., x2x1=2x_2 - x_1 = 2 which is impossible. Similarly, the possibility of x1x_1 being even and x2x_2 being odd can also be ruled out, using the similar argument. Therefore, both x1x_1 and x2x_2 must be either odd or even. Suppose both x1x_1 and x2x_2 are odd. Then f(x1)=f(x2)x1+1=x2+1x1=x2f(x_1) = f(x_2) ⇒ x_1 + 1 = x_2 + 1 ⇒ x_1 = x_2 . Similarly, if both x1x_1 and x2x_2 are even, then also f(x1)=f(x2)x11=x21x1=x2f(x_1) = f(x_2) ⇒ x_1 - 1 = x_2 - 1 ⇒ x_1 = x_2. Thus, ff is one-one. Also, any odd number 2r+12r + 1 in the co-domain N is the image of 2r+22r+ 2 in the domain N and any even number 2r2r in the co-domain N is the image of 2r12r - 1 in the domain N. Thus, ff is onto.

उदाहरण 13

Show that an onto function f:{1,2,3}{1,2,3}f : \{1, 2, 3\} → \{1, 2, 3\} is always one-one.

हल

Suppose ff is not one-one. Then there exists two elements, say 11 and 22 in the domain whose image in the co-domain is same. Also, the image of 33 under ff can be only one element. Therefore, the range set can have at the most two elements of the co-domain {1,2,3}\{1, 2, 3\}, showing that ff is not onto, a contradiction. Hence, ff must be one-one.

उदाहरण 14

Show that a one-one function f:{1,2,3}{1,2,3}f : \{1, 2, 3\} → \{1, 2, 3\} must be onto.

हल

Since ff is one-one, three elements of {1,2,3}\{1, 2, 3\} must be taken to 3 different elements of the co-domain {1,2,3}\{1, 2, 3\} under ff. Hence, ff has to be onto.


EXERCISE 1.2

1.2 Question 1

Show that the function f:RRf : ℝ_* → ℝ_* defined by f(x)=1xf(x) = \frac{1}{x} is one-one and onto, where Rℝ_* is the set of all non-zero real numbers. Is the result true, if the domain Rℝ_* is replaced by N with co-domain being same as Rℝ_*?

1.2 Question 2

Check the injectivity and surjectivity of the following functions:

  • (i) f:NNf : ℕ → ℕ given by f(x)=x2f(x) = x^2
  • (ii) f:ZZf : ℤ → ℤ given by f(x)=x2f(x) = x^2
  • (iii) f:RRf : ℝ → ℝ given by f(x)=x2f(x) = x^2
  • (iv) f:NNf : ℕ → ℕ given by f(x)=x3f(x) = x^3
  • (v) f:ZZf : ℤ → ℤ given by f(x)=x3f(x) = x^3

1.2 Question 3

Prove that the Greatest Integer Function f:RRf : ℝ → ℝ, given by f(x)=[x]f(x) = [x], is neither one-one nor onto, where [x][x] denotes the greatest integer less than or equal to xx.

1.2 Question 4

Show that the Modulus Function f:RRf : ℝ → ℝ, given by f(x)=xf(x) = |x|, is neither one- one nor onto, where x|x| is xx, if xx is positive or 00 and x|x| is x-x, if xx is negative.

1.2 Question 5

Show that the Signum Function f:RRf : ℝ → ℝ, given by is neither one-one nor onto.

1.2 Question 6

Let A={1,2,3}A = \{1, 2, 3\}, B={4,5,6,7}B = \{4, 5, 6, 7\} and let f={(1,4),(2,5),(3,6)}f = \{(1, 4), (2, 5), (3, 6)\} be a function from AA to BB. Show that ff is one-one.

1.2 Question 7

In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer.

  • (i) f:RRf : ℝ → ℝ defined by f(x)=34xf(x) = 3 - 4x
  • (ii) f:RRf : ℝ → ℝ defined by f(x)=1+x2f(x) = 1 + x^2

1.2 Question 8

Let AA and BB be sets. Show that f:A×BB×Af : A \times B → B \times A such that f(a,b)=(b,a)f(a, b) = (b, a) is bijective function.

1.2 Question 9

Let f:NNf : ℕ → ℕ be defined by

f(n)={n+12,if n is oddn2,if n is evenfor all nN. f(n) = \begin{cases} \frac{n+1}{2}, & \text{if } n \text{ is odd}\\ \frac{n}{2}, & \text{if } n \text{ is even} \end{cases} \text{for all } n ∈ ℕ.

State whether the function ff is bijective. Justify your answer.

1.2 Question 10

Let A=R{3}A = ℝ - \{3\} and B=R{1}B = ℝ - \{1\}. Consider the function f:ABf : A → B defined by f(x)=x2x3f(x) = \frac{x-2}{x-3}. Is ff one-one and onto? Justify your answer.

1.2 Question 11

Let f:RRf : ℝ → ℝ be defined as f(x)=x4f(x) = x^4. Choose the correct answer.

  • (A) ff is one-one onto
  • (B) ff is many-one onto
  • (C) ff is one-one but not onto
  • (D) ff is neither one-one nor onto.

1.2 Question 12

Let f:RRf : ℝ → ℝ be defined as f(x)=3xf(x) = 3x. Choose the correct answer.

  • (A) ff is one-one onto
  • (B) ff is many-one onto
  • (C) ff is one-one but not onto
  • (D) ff is neither one-one nor onto.

1.4 Composition of Functions and Invertible Function

परिभाषा 8

Let f:ABf : A → B and g:BCg : B → C be two functions. Then the composition of ff and gg, denoted by gofgof, is defined as the function gof:ACgof : A → C given by gof(x)=g(f(x))gof(x) = g(f(x)), xA∀ x ∈ A.

Fig 1.5

Fig 1.5
उदाहरण 15

Let

f:{2,3,4,5}{3,4,5,9}f : \{2, 3, 4, 5\} → \{3, 4, 5, 9\} and

g:{3,4,5,9}{7,11,15}g : \{3, 4, 5, 9\} → \{7, 11, 15\}

be functions defined as

f(2)=3f(2) = 3, f(3)=4f(3) = 4, f(4)=f(5)=5f(4) = f(5) = 5 and

g(3)=g(4)=7g(3) = g(4) = 7 and g(5)=g(9)=11g(5) = g(9) = 11.

Find gofgof.

हल

We have

gof(2)=g(f(2))=g(3)=7gof(2) = g(f(2)) = g(3) = 7,

gof(3)=g(f(3))=g(4)=7gof(3) = g(f(3)) = g(4) = 7,

gof(4)=g(f(4))=g(5)=11gof(4) = g(f(4)) = g(5) = 11

and gof(5)=g(5)=11gof(5) = g (5) = 11.

उदाहरण 16

Find gofgof and fogfog, if f:RRf : ℝ → ℝ and g:RRg : ℝ → ℝ are given by f(x)=cosxf (x) = cos x and g(x)=3x2g (x) = 3x^2. Show that goffoggof ≠ fog.

हल

We have gof(x)=g(f(x))=g(cos(x))=3(cos(x))2=3cos2(x)gof (x) = g (f(x)) = g(cos(x)) = 3 (cos(x))^2 = 3 cos^2(x). Similarly, fog(x)=f(g(x))=f(3x2)=cos(3x2)fog(x) = f(g(x)) = f(3x^2) = cos(3x^2). Note that 3cos2(x)cos(3x2)3cos^2(x) ≠ cos(3x^2), for x=0x = 0. Hence, goffoggof ≠ fog.

परिभाषा 9

A function f:XYf : X → Y is defined to be invertible, if there exists a function g:YXg : Y → X such that gof=IXgof = I_X and fog=IYfog = I_Y. The function gg is called the inverse of ff and is denoted by f1f^{-1}.

Thus, if ff is invertible, then ff must be one-one and onto and conversely, if ff is one-one and onto, then ff must be invertible. This fact significantly helps for proving a function ff to be invertible by showing that ff is one-one and onto, specially when the actual inverse of ff is not to be determined.

उदाहरण 17

Let f:NYf : ℕ → Y be a function defined as f(x)=4x+3f(x) = 4x + 3, where, Y={yN:y=4x+3Y = \{y ∈ ℕ: y = 4x + 3 for some xN}x ∈ ℕ\}. Show that ff is invertible. Find the inverse.

हल

Consider an arbitrary element yy of YY. By the definition of YY, y=4x+3y = 4x + 3, for some xx in the domain ℕ.

This shows that x=(y3)4x = \frac{(y − 3)}{4}. Define g:YNg : Y → N by g(y)=(y3)4g (y) = \frac{(y − 3)}{4}.

Now, gof(x)=g(f(x))=g(4x+3)=(4x+33)4=xgof(x) = g (f(x)) = g(4x + 3) = \frac{(4x + 3 − 3)}{4} = x and

fog(y)=f(g(y))=f((y3)4)=4(y3)4+3=y3+3=yfog(y) = f(g(y)) = f(\frac{(y-3)}{4}) = \frac{4(y-3)}{4} + 3 = y - 3 + 3 = y.

This shows that gof=INgof = I_ℕ and fog=IYfog = I_Y, which implies that ff is invertible and gg is the inverse of ff.

Miscellaneous Examples

उदाहरण 18

If R1R_1 and R2R_2 are equivalence relations in a set AA, show that R1R2R_1 ∩ R_2 is also an equivalence relation.

हल

Since R1R_1 and R2R_2 are equivalence relations, (a,a)R1(a, a) ∈ R_1, and (a,a)R2(a, a) ∈ R_2 aA∀ a ∈ A.

This implies that (a,a)R1R2,a(a, a) ∈ R_1 ∩ R_2, ∀ a, showing R1R2R_1 ∩ R_2 is reflexive.

Further, (a,b)R1R2(a, b) ∈ R_1 ∩ R_2

(a,b)R1⇒ (a, b) ∈ R_1 and (a,b)R2(a, b) ∈ R_2

(b,a)R1⇒ (b, a) ∈ R_1 and (b,a)R2(b, a) ∈ R_2

(b,a)R1R2⇒ (b, a) ∈ R_1 ∩ R_2, hence, R1R2R_1 ∩ R_2 is symmetric.

Similarly, (a,b)R1R2(a, b) ∈ R_1 ∩ R_2 and (b,c)R1R2(b, c) ∈ R_1 ∩ R_2

(a,c)R1⇒ (a, c) ∈ R_1 and (a,c)R2(a, c) ∈ R_2

(a,c)R1R2⇒ (a,c) ∈ R_1 ∩ R_2.

This shows that R1R2R_1 ∩ R_2 is transitive.

Thus, R1R2R_1 ∩ R_2 is an equivalence relation.

उदाहरण 19

Let RR be a relation on the set AA of ordered pairs of positive integers defined by (x,y)R(u,v)(x, y) R (u, v) if and only if xv=yuxv = yu. Show that RR is an equivalence relation.

हल

Clearly, (x,y)R(x,y),(x,y)A(x, y) R (x, y), ∀ (x, y) ∈ A, since xy=yxxy = yx.

This shows that RR is reflexive.

Further, (x,y)R(u,v)(x, y) R (u, v)

xv=yuuy=vx⇒ xv = yu ⇒ uy = vx and hence (u,v)R(x,y)(u, v) R (x, y).

This shows that RR is symmetric.

Similarly, (x,y)R(u,v)(x, y) R (u, v) and (u,v)R(a,b)(u, v) R (a,b)

xv=yu⇒ xv = yu and ub=vaub = va

xvau=yuau⇒ xv\frac{a}{u} = yu\frac{a}{u}

xvbv=yuau⇒ xv\frac{b}{v} = yu\frac{a}{u}

xb=ya⇒ xb = ya and hence (x,y)R(a,b)(x, y) R (a, b).

Thus, RR is transitive.

Thus, RR is an equivalence relation.

उदाहरण 20

Let X={1,2,3,4,5,6,7,8,9}X = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}.

Let R1R_1 be a relation in XX given by

R1={(x,y):xyR_1 = \{(x, y) : x - y is divisible by 3}3\}

and R2R_2 be another relation on XX given by

R2={(x,y):{x,y}{1,4,7}}R_2 = \{(x, y): \{x, y\} ⊂ \{1, 4, 7\}\} or {x,y}{2,5,8}or{x,y}{3,6,9}}\{x, y\} ⊂ \{2, 5, 8\} or \{x, y\} ⊂ \{3, 6, 9\}\}.

Show that R1=R2R_1 = R_2.

हल

Note that the characteristic of sets {1,4,7}\{1, 4, 7\}, {2,5,8}\{2, 5, 8\} and {3,6,9}\{3, 6, 9\} is that difference between any two elements of these sets is a multiple of 33.

Therefore, (x,y)R1(x, y) ∈ R_1

xy⇒ x - y is a multiple of 33

{x,y}{1,4,7}⇒ \{x, y\} ⊂ \{1, 4, 7\} or {x,y}{2,5,8}\{x, y\} ⊂ \{2, 5, 8\} or {x,y}{3,6,9}\{x, y\} ⊂ \{3, 6, 9\}

(x,y)R2⇒ (x, y) ∈ R_2. Hence, R1R2R_1 ⊂ R_2.

Similarly, {x,y}R2\{x, y\} ∈ R_2

{x,y}{1,4,7}⇒ \{x, y\} ⊂ \{1, 4, 7\} or {x,y}{2,5,8}\{x, y\} ⊂ \{2, 5, 8\} or {x,y}{3,6,9}\{x, y\} ⊂ \{3, 6, 9\}

xy⇒ x - y is divisible by 33

{x,y}R1⇒ \{x, y\} ∈ R_1. This shows that R2R1R_2 ⊂ R_1.

Hence, R1=R2R_1 = R_2.

उदाहरण 21

Let f:XYf : X → Y be a function. Define a relation RR in XX given by R={(a,b):f(a)=f(b)}R = \{(a, b): f(a) = f(b)\}. Examine whether RR is an equivalence relation or not.

हल

For every aX,(a,a)Ra ∈ X, (a, a) ∈ R, since f(a)=f(a)f (a) = f (a), showing that RR is reflexive.

Similarly, (a,b)R(a, b) ∈ R

f(a)=f(b)⇒ f (a) = f (b)

f(b)=f(a)⇒ f (b) = f (a)

(b,a)R⇒ (b, a) ∈ R. Therefore, RR is symmetric.

Further, (a,b)R(a, b) ∈ R and (b,c)R(b, c) ∈ R

f(a)=f(b)⇒ f (a) = f (b) and f(b)=f(c)f (b) = f (c)

f(a)=f(c)⇒ f (a) = f (c)

(a,c)R⇒ (a, c) ∈ R, which implies that RR is transitive.

Hence, RR is an equivalence relation.

उदाहरण 22

Find the number of all one-one functions from set A={1,2,3}A = \{1, 2, 3\} to itself.

हल

One-one function from {1,2,3}\{1, 2, 3\} to itself is simply a permutation on three symbols 1,2,31, 2, 3. Therefore, total number of one-one maps from {1,2,3}\{1, 2, 3\} to itself is same as total number of permutations on three symbols 1,2,31, 2, 3 which is 3!=63! = 6.

उदाहरण 23

Let A={1,2,3}A = \{1, 2, 3\}. Then show that the number of relations containing (1,2)(1, 2) and (2,3)(2, 3) which are reflexive and transitive but not symmetric is three.

हल

The smallest relation R1 containing (1,2)(1, 2) and (2,3)(2, 3) which is reflexive and transitive but not symmetric is {(1,1),(2,2),(3,3),(1,2),(2,3),(1,3)}\{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)\}. Now, if we add the pair (2,1)(2, 1) to R1R_1 to get R2R_2, then the relation R2R_2 will be reflexive, transitive but not symmetric. Similarly, we can obtain R3R_3 by adding (3,2)(3, 2) to R1R_1 to get the desired relation. However, we can not add two pairs (2,1),(3,2)(2, 1), (3, 2) or single pair (3,1)(3, 1) to R1R_1 at a time, as by doing so, we will be forced to add the remaining pair in order to maintain transitivity and in the process, the relation will become symmetric also which is not required. Thus, the total number of desired relations is three.

उदाहरण 24

Show that the number of equivalence relation in the set {1,2,3}\{1, 2, 3\} containing (1,2)(1, 2) and (2,1)(2, 1) is two.

हल

The smallest equivalence relation R1R_1 containing (1,2)(1, 2) and (2,1)(2, 1) is {(1,1),(2,2),(3,3),(1,2),(2,1)}\{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)\}. Now we are left with only 4 pairs namely (2,3)(2, 3), (3,2)(3, 2), (1,3)(1, 3) and (3,1)(3, 1). If we add any one, say (2,3)(2, 3) to R1R_1, then for symmetry we must add (3,2)(3, 2) also and now for transitivity we are forced to add (1,3)(1, 3) and (3,1)(3, 1). Thus, the only equivalence relation bigger than R1R_1 is the universal relation. This shows that the total number of equivalence relations containing (1,2)(1, 2) and (2,1)(2, 1) is two.

उदाहरण 25

Consider the identity function IN:NNI_ℕ : ℕ → ℕ defined as IN(x)=xxNI_ℕ(x) = x ∀ x ∈ ℕ. Show that although INI_ℕ is onto but IN+IN:NNI ℕ + I ℕ : ℕ → ℕ defined as

(IN+IN)(x)=IN(x)+IN(x)=x+x=2x(I_ℕ + I_ℕ)(x) = I_ℕ(x) + I_ℕ(x) = x + x = 2x is not onto.

हल

Clearly INI_ℕ is onto. But IN+INI_ℕ + I_ℕ is not onto, as we can find an element 33 in the co-domain N such that there does not exist any xx in the domain N with (IN+IN)(x)=2x=3(I_ℕ + I_ℕ)(x) = 2x = 3.

उदाहरण 26

Consider a function f:[0,π2]Rf : [0,\frac{π}{2}] → ℝ given by f(x)=sin(x)f(x) = sin(x) and g:[0,π2]Rg : [0,\frac{π}{2}] → ℝ given by g(x)=cos(x)g(x) = cos(x). Show that ff and gg are one-one, but f+gf + g is not one-one.

हल

Since for any two distinct elements x1x_1 and x2x_2 in [0,π2][0,\frac{π}{2}], sin(x1)sin(x2)sin(x_1) ≠ sin(x_2) and cos(x1)cos(x2)cos(x_1) ≠ cos(x_2), both ff and g must be one-one.

But (f+g)(0)=sin(0)+cos(0)=1(f + g)(0) = sin(0) + cos(0) = 1 and (f+g)(π2)=sin(π2)+cos(π2)=1(f + g)(\frac{π}{2}) = sin(\frac{π}{2}) + cos(\frac{π}{2}) = 1.

Therefore, f+gf + g is not one-one.


Miscellaneous Exercise on Chapter 1

1.M Question 1

Show that the function f:R{xR:1<x<1}f : ℝ → \{x ∈ ℝ : - 1 < x < 1\} defined by f(x)=x1+xf(x) = \frac{x}{1+|x|}, xRx ∈ R is one one and onto function.

1.M Question 2

Show that the function f:RRf : ℝ → ℝ given by f(x)=x3f(x) = x^3 is injective.

1.M Question 3

Given a non empty set XX, consider P(X)P(X) which is the set of all subsets of XX. Define the relation RR in P(X)P(X) as follows:

For subsets AA, BB in P(X)P(X), ARBARB if and only if ABA ⊂ B. Is RR an equivalence relation on P(X)P(X)? Justify your answer.

1.M Question 4

Find the number of all onto functions from the set {1,2,3,......,n}\{1, 2, 3,......, n\} to itself.

1.M Question 5

Let A={1,0,1,2}A = \{- 1, 0, 1, 2\}, B={4,2,0,2}B = \{- 4, - 2, 0, 2\} and f,g:ABf, g : A → B be functions defined by f(x)=x2x,xAf(x) = x^2 - x, x ∈ A and g(x)=2x121,xAg(x) = 2|x-\frac{1}{2}|-1, x ∈ A. Are ff and gg equal? Justify your answer.

(Hint: One may note that two functions f:ABf : A → B and g:ABg : A → B such that f(a)=g(a)aAf(a) = g(a) ∀ a ∈ A, are called equal functions).

1.M Question 6

Let A={1,2,3}A = \{1, 2, 3\}. Then number of relations containing (1,2)(1, 2) and (1,3)(1, 3) which are reflexive and symmetric but not transitive is

  • (A) 1
  • (B) 2
  • (C) 3
  • (D) 4

1.M Question 7

Let A={1,2,3}A = \{1, 2, 3\}. Then number of equivalence relations containing (1,2)(1, 2) is

  • (A) 1
  • (B) 2
  • (C) 3
  • (D) 4

Summary


ऐतिहासिक पृष्ठभूमि

फलन की संकल्पना, R. Descartes (सन् 1596-1650 ई.) से प्रारंभ हो कर एक लंबे अंतराल में विकसित हुई है। Descartes ने सन् 1637 ई. में अपनी पांडुलिपि “Geometrie” में शब्द ‘फलन’ का प्रयोग, ज्यामितीय वक्रों, जैसे अतिपरवलय (Hyperbola), परिवलय (Parabola) तथा दीर्घवृत्त (Ellipse), का अध्ययन करते समय, एक चर राशि xx के धन पूर्णांक घात xnx^n के अर्थ में किया था। James Gregory (सन् 1636-1675 ई.) ने अपनी वृफ़ति “Vera Circuli et Hyperbolae Quadratura” (सन् 1667 ई.) में, फलन को एक ऐसी राशि माना था, जो किसी अन्य राशि पर बीजीय अथवा अन्य संक्रियाओं को उत्तरोत्तर प्रयोग करने से प्राप्त होती है। बाद में G. W. Leibnitz (1646-1716 ई.) नें 1673 ई. में लिखित अपनी पांडुलिपि “Methodus tangentium inversa, seu de functionibus” में शब्द ‘फलन’ को किसी ऐसी राशि के अर्थ में प्रयोग किया, जो किसी वक्र के एक बिंदु से दूसरे बिंदु तक इस प्रकार परिवर्तित होती रहती है, जैसे वक्र पर बिंदु के निर्देशांक, वक्र की प्रवणता, वक्र की स्पर्शी तथा अभिलंब परिवर्तित होते हैं। तथापि अपनी वृफ़ति “Historia” (1714 ई.) में Leibnitz ने फलन को एक चर पर आधारित राशि के रूप में प्रयोग किया था। वाक्यांश ’xx का फलन’ प्रयोग में लाने वाले वे सर्वप्रथम व्यक्ति थे। John Bernoulli (1667-1748 ई.) ने सर्वप्रथम 1718 ई. में संकेतन (Notation) φxφx को वाक्यांश ’xx का फलन’ को प्रकट करने के लिए किया था। परंतु फलन को निरूपित करने के लिए प्रतीकों, जैसे ff, FF, φφ, ψψ … का व्यापक प्रयोग Leonhard Euler (1707-1783 ई.) द्वारा 1734 ई. में अपनी पांडुलिपि “Analysis Infinitorium”. के प्रथम खण्ड में किया गया था। बाद में Joeph Louis Lagrange (1736-1813 ई.) ने 1793 ई. में अपनी पांडुलिपि “Theorie des functions analytiques” प्रकाशित की, जिसमें उन्होंने विश्लेषणात्मक (Analytic) फलन के बारे में परिचर्चा की थी तथा संकेतन f(x)f(x), F(x)F(x), φ(x)φ(x) आदि का प्रयोग xx के भिन्न-भिन्न फलनों के लिए किया था। तदोपरांत Lejeunne Dirichlet (1805-1859 ई.) ने फलन की परिभाषा दी। जिसका प्रयोग उस समय तक होता रहा जब तक वर्तमान काल में फलन की समुच्चय सैद्धांतिक परिभाषा का प्रचलन नहीं हुआ, जो Georg Cantor (1845-1918 ई) द्वारा विकसित समुच्चय सिद्धांत के बाद हुआ। वर्तमान काल में प्रचलित फलन की समुच्चय सैद्धांतिक परिभाषा Dirichlet द्वारा प्रदत्त फलन की परिभाषा का मात्र अमूर्तीकरण (Abstraction) है।